
Towards Continuous Policy-driven
Demand Response in Data Centers

David Irwin, Navin Sharma, and Prashant Shenoy
University of Massachusetts, Amherst

{irwin,nksharma,shenoy}@cs.umass.edu

ABSTRACT
Demand response (DR) is a technique for balancing electricity sup-
ply and demand by regulating power consumption instead of gen-
eration. DR is a key technology for emerging smart electric grids
that aim to increase grid efficiency, while incorporating significant
amounts of clean renewable energy sources. In today’s grid, DR
is a rare event that only occurs when actual peak demands exceed
the expected peak. In contrast, smart electric grids incentivize con-
sumers to engage in continuous policy-driven DR to 1) optimize
power consumption for time-of-use pricing and 2) deal with power
variations from non-dispatchable renewable energy sources. While
data centers are well-positioned to exploit DR, applications must
cope with significant, frequent, and unpredictable changes in avail-
able power by regulating their energy footprint.

The problem is challenging since data centers often use dis-
tributed storage systems that co-locate computation and storage,
and serve as a foundation for a variety of stateful distributed ap-
plications. As a result, existing approaches that deactivate servers
as power decreases do not translate well to DR, since important
application-level state may become completely unavailable. In this
paper, we propose a DR-compatible storage system that uses stag-
gered node blinking patterns combined with a balanced data layout
and popularity-based replication to optimize I/O throughput, data
availability, and energy-efficiency as power varies. Initial simu-
lation results show the promise of our approach, which increases
I/O throughput by at least 25% compared to an activation approach
when adjusting to real-world wind and price fluctuations.

Categories and Subject Descriptors
C.5.0 [Computer System Implementation]: General

General Terms
Design, Management, Performance

1. INTRODUCTION
Data centers are rapidly expanding to accommodate the growth

of online cloud-based services—facilities with hundreds of thou-
sands of servers and up to a million cores are on the horizon. As is
now well-known, larger data centers require more energy to power
and cool their servers. The most recent estimates attribute 0.3%

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
GreenNet’11, August 19, 2011, Toronto, Ontario, Canada.
Copyright 2011 ACM 978-1-4503-0799-4/11/08 ...$10.00.

of all U.S. energy consumption specifically to data centers [11],
with consumption estimated to double every 5 years [1]. Since
over 83% of electrical energy in the U.S. derives from burning
dirty fossil fuels, this rising energy demand has serious environ-
mental ramifications [17]. Additionally, since the growth in soci-
ety’s energy demand is beginning to outpace its ability to locate,
extract, and burn fossil fuels, energy prices are on a long-term up-
ward trend [12]. Even using the “cheap” power available today, the
energy-related costs of data centers already represent a significant
fraction (~31% [10]) of their total cost of ownership. Thus, design-
ing techniques to reduce the financial and environmental impact of
data center energy consumption is an important problem. Energy
price trends have already led data centers to experiment with alter-
native energy sources, such as wind [9], solar [20], and tidal [21].

Prior research focuses largely on increasing overall energy-
efficiency by reducing data center energy consumption. For ex-
ample, power-proportional data centers and servers that consume
power in proportion to workload demands, e.g., by deactivating idle
servers, increase efficiency by significantly reducing wasted power
from idle servers [6, 26]. Likewise, balanced systems increase effi-
ciency by reducing wasted power from idle server components [5,
23]. However, little prior research focuses on optimizing when data
centers consume power. The timing of data center power consump-
tion has a disproportionate affect on both the monetary cost and
carbon footprint of power generation for at least two reasons.
Heterogenous Generators. Utilities operate a variety of genera-
tors that vary in their carbon emissions and fuel costs. For instance,
the “peaking" generators that satisfy transient demand peaks have
significantly higher emissions and fuel costs than the baseload gen-
erators that operate continuously. Thus, electricity generated dur-
ing peak hours is more expensive and “dirty" than off-peak hours.
Intermittent Renewables. Both data centers and utilities are
beginning to harvest energy from intermittent renewable power
sources, such as wind and solar, which have no carbon footprint
or fuel costs. As a result, data centers have an opportunity to de-
crease their carbon footprint by aligning when they consume power
with when these clean energy sources are producing it.

The economics of power generation is also motivating utilities
to adopt a variety of pricing structures that better reflect generation
costs. As one example, utilities often add surcharges to electricity
bills based on peak electricity usage over a billing cycle to incen-
tivize consumers to “flatten” their electricity demand. As another
example, many utilities are shifting from flat-rate pricing models
for consumers to time-of-use pricing models that allow electricity
prices to rise and fall with demand. Such market-based pricing,
which is already common in wholesale electricity markets, incen-
tivizes consumers to shift their usage to off-peak hours. Addition-
ally, to further encourage the use of intermittent renewables, gov-
ernments are beginning to impose cap-and-trade policies that arti-
ficially increase the cost of energy from fossil fuels. For example,
a cap-and-trade policy went into effect in the U.K. in April 2010

for businesses consuming more than 6GWh per year [14]. Each
of the examples above represent strong monetary incentives for
consumers, including data centers, to regulate not only how much
power they consume, but also when they consume power. These
incentives are an integral part of recent smart grid efforts.

Demand response (DR) is a general term for dynamically reg-
ulating energy consumption over time. In today’s electric grid,
utilities typically implement DR by manually signaling large con-
sumers, e.g., via phone or email, to request reductions in their
electricity usage during times of grid congestion or capacity con-
straints. Since the grid has the generation capacity to meet esti-
mated peak demands, it uses DR rarely to prevent unexpected out-
ages or “brownout" scenarios. As smart grid efforts expand, we
envision consumers engaging in continuous policy-driven DR to
optimize power consumption for time-of-use market-based pricing
or to deal with power variations from non-dispatchable renewable
energy sources. In this case, rather than the utility directing con-
sumer DR on rare occasions, consumers will automatically decide
when and how to consume power based on automated policies that
precisely control their cost and carbon footprint.

Data centers are particularly well-positioned to adopt and benefit
from continuous policy-driven DR for at least three reasons.

• First, servers already include sophisticated power manage-
ment mechanisms that are remotely programmable. As a re-
sult, data centers are capable of programmatically varying
their power consumption over a wide dynamic power range.

• Second, many workloads are tolerant to delays or perfor-
mance degradation, enabling data centers to adjust their
power consumption over time. The price elasticity of de-
mand is higher for these flexible workloads than many house-
hold and industrial loads, which are not highly responsive to
price fluctuations.

• Finally, data centers are large industrial power consumers
that have a substantial impact on grid conditions—utilities
typically target these large consumers for DR first.

Due to the explosive growth of data center size and energy con-
sumption, a 2007 EPA report to Congress on data center energy ef-
ficiency encourages them to adopt DR to reduce their strain on the
electric grid [1]. However, to exploit DR, the key challenge that sys-
tems researchers must address is designing applications that per-
form well in the face of significant, frequent, and potentially unpre-
dictable variations in power. Thus, designing for DR differs signifi-
cantly from past research efforts on designing for energy-efficiency
or proportionality. Rather than optimizing the energy required to
satisfy a given workload, designing for DR requires systems to op-
timize application performance as power varies. The problem is
particularly challenging since power fluctuations may occur inde-
pendently of workload demands.

2. BLINKING: A GENERAL DR AB-
STRACTION FOR DATA CENTERS

There are multiple possible approaches to handling power varia-
tions in data centers. One option is to migrate workload, in the form
of virtual machines (VMs), from locations with power shortages to
those with power surpluses [3]. For example, solar-powered data
centers may migrate VMs to daytime locations to handle nighttime
power shortages. Power costs for geographically-disparate data
centers may differ for a variety of other reasons as well [22], moti-
vating migrations to data centers with cheap power. However, de-
spite recent advances in optimizing live VM migration for the wide-
area network links between data centers [28], the approach is not

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100

In
ac

ce
ss

ib
le

 D
at

a
(%

)

Inactive Servers (%)

k=1
k=3
k=5
k=7

Figure 1: Inactive servers result in inaccessible data. Replica-
tion mitigates, but does not eliminate, the problem, especially
for high percentages (>50%) of inactive servers.

suitable for data-intensive workloads that access vast amounts of
storage. Even with dedicated high-bandwidth network links, daily
transfers of multi-petabyte storage volumes is infeasible. Further,
while solar power may vary somewhat slowly and predictably on a
daily basis, in general, data centers may wish to optimize for power
variations that are much more rapid and unpredictable, e.g., from
changing spot prices or wind power.

We recently proposed a new technique, called blinking [24], to
regulate a data center’s energy footprint in response to power vari-
ations. Blinking rapidly transitions servers between a high-power
active state and a low-power inactive sleep state. Since power con-
sumption in the inactive state, e.g., ACPI’s S3 state, is minimal, it
is possible to regulate cluster energy consumption over small time
scales by changing the relative duration of each server’s active and
inactive modes. We briefly outline our implementation of a pro-
totype blinking cluster in Section 4. In prior work, we demon-
strate how to enable blinking in memcached, a stateless distributed
memory cache [24]. However, we intend blinking to be a general
abstraction for implementing DR for a wide range of data center
applications. In this paper, we examine how blinking might en-
able DR for the distributed storage systems now common in data
centers. Since power variations result in servers becoming period-
ically unavailable, distributed storage represents one of the most
challenging problems for implementing DR in data centers.

The blinking abstraction supports a variety of blinking policies.
For instance, an activation policy is any blinking policy that only
varies the fraction of inactive servers to vary power consumption.
Activation policies are commonly used to ensure data centers are
energy-proportional by varying the fraction of active servers to
match demand [4, 16, 26]. Prior research has also used activa-
tion policies to address power variations from renewable energy
sources, although the primary focus is on simple computationally-
intensive workloads using always-accessible storage [15]. The
blinking abstraction permits other more sophisticated policies as
well, including synchronous policies that transition servers between
the active and inactive states in tandem, asynchronous policies that
stagger server active periods over time, and various asymmetric
policies that blink servers at different rates based on application-
specific performance metrics. In the next section, we focus on
issues with enabling DR for distributed storage, and discuss the
disadvantages of commonly-used activation policies.

3. PROBLEMS WITH ACTIVATION
Distributed storage layers, such as HDFS [25], distribute data

across compute servers in data centers, and serve as the founda-

tion for many higher-level distributed data center applications. An
activation policy that naïvely deactivates servers to save energy or
match a given level of available power is capable of making the
data on inactive servers inaccessible. One way to prevent data on
inactive servers from becoming inaccessible is by storing replicas
on active servers. Replication is already used to improve the per-
formance and reliability of distributed storage, and works well for
an activation policy if the number of inactive servers is small. For
example, with HDFS’s random replica placement policy, the prob-
ability that any block is unavailable is m!(n−k)!

n!(m−k)!
for n servers, m

inactive servers, and k replicas per block. Figure 1 plots the ex-
pected percentage of inaccessible data as a function of the percent-
age of inactive servers, and shows that nearly all data is accessible
for small percentages of inactive servers.

However, the amount of inaccessible data rises dramatically once
50% of servers are inactive, even for aggressive replication factors,
e.g., k = 7. Frequent periods of low power and many inactive
servers is a common case for many DR scenarios. Further, even
a few inactive servers, where the expected percentage of inacces-
sible data is small, have the potential to cause significant perfor-
mance issues, e.g., by stalling large batch jobs that are dependent
on some inaccessible data. One way to address the problem is
through careful placement of data and replicas. For instance, prior
work on energy-efficient distributed storage proposes data layouts
that enable servers to be deactivated without causing any data to
become unavailable [4, 13, 18]. In general, the proposed layouts
store primary replicas on one subset of servers, secondary repli-
cas on another mutually-exclusive subset, tertiary replicas on yet
another subset, etc. However, these concentrated data layouts in-
troduce at least three issues if available power varies frequently and
significantly, and is independent of workload demands.
Wasteful Thrashing. Power variations may trigger frequent
changes to the number of the active servers storing primary, sec-
ondary, tertiary, etc. replicas that require migrations to either 1)
spread data out to provide higher I/O throughput or 2) concentrate
data to keep it accessible. Minimizing these migration overheads is
a focus of prior work on energy-efficient storage [29].
Wasted Capacity. Recent work on energy-proportional distributed
storage reduces migration-related thrashing by making replica sets
progressively larger, e.g., more servers store secondary replicas
than primary replicas [4]. Assuming servers have similar storage
capacity, the approach wastes progressively more capacity on the
servers storing secondary, tertiary, etc. replicas.
Inaccessible Data. Regardless of the data layout, if there is not
enough power to activate the necessary servers to store a complete
data set, then some data will be inaccessible. Thus, even data lay-
outs that ensure a small “covering” subset of servers store all pri-
mary replicas has the potential to make data inaccessible [18],

To highlight the problems of wasteful thrashing and inaccessible
data, consider a simple example where there is enough power to
currently operate 2N servers storing a data set’s primary replicas.
Also assume that the data set fills the storage capacity of N servers.
Now consider the consequences of a sudden and unexpected drop
in power by a factor 2, which leaves only N servers active. To
ensure that the data is available, we must migrate to a new con-
centrated data layout that spreads data across the N active servers.
However, if we did not expect the drop, there may not have been
enough time to migrate to the more concentrated data layout. In this
case, 50% of the data may be inaccessible even if we have enough
capacity to store it on N active servers. Now consider what hap-
pens if available power drops again by a factor of 2, which leaves
only 0.5N remaining active servers. Since the data set fills the stor-
age capacity of N servers, migration is not even possible and 50%

D1

D3

D2

D4

D1 D2 D3 D4

D1

D3

D2

D4

Ti
m
e

Figure 2: Power variations may cause the subset of active
servers storing a data set’s primary replicas to decrease, which
triggers costly migrations to keep data accessible. At low power
levels, some data is certain to be inaccessible.

of the data set is inaccessible at best. Figure 2 graphically depicts
our example for N = 4. Note that power increases also require
time-consuming data migrations to spread data out and increase
aggregate I/O throughput. In the next section we discuss a blinking
approach that addresses the problems above, while providing better
I/O throughput, data availability, and energy-efficiency.

4. BLINKING DISTRIBUTED STORAGE
We first provide a brief summary of blinking. Our prior work in-

cludes a complete description, and applies the concept to a simple
distributed memory cache that does not persist data [24]. Blink-
ing is a simple mechanism that enables an external controller to
remotely set a blink interval t and an active interval tactive on
a server, such that for every interval t a server is active for time
tactive and inactive for time t − tactive. ACPI’s S3 state is a
good choice for the inactive state, since it combines the capabil-
ity for fast millisecond-scale transitions with low power consump-
tion (<5% peak power). In contrast, component-level techniques,
such as DVFS, are much less effective at satisfying steep drops in
available power, since they are often unable to reduce consumption
below 50% peak power [27]. To control inter-server blinking pat-
terns, the blinking abstraction also enables a controller to specify
when a blink interval starts, as well as when within a blink interval
the active interval starts.

To illustrate the advantages of blinking distributed storage for
DR, we consider our example from the previous section and dis-
cuss how blinking affects I/O throughput, data availability and re-
quest latency, and energy-efficiency. We assume the use of flash-
based SSDs, which have already been shown to be more energy-
efficient than disks for a range of both seek- and scan-intensive
workloads [5, 23, 27]. As a result, flash-based SSDs are becom-
ing increasingly popular for data-intensive workloads. Flash-based
SSDs are also compatible with blinking, which relies on frequent
and rapid transitions between power states. Blinking could also
be applicable to mechanical disks, but would require a new low-
power state that is similar to ACPI’s S3 state but permits disks to
remain spun-up. Frequent disk spin-up and spin-down transitions
have been shown to degrade their reliability [29].

4.1 I/O Throughput
Recall that in our example there is initially enough power to op-

erate 2N servers that each provide storage for a fraction of our

D1 D2 D3 D4

D1 D2 D3 D4

D1 D2 D3 D4

Ti
m
e

50%

100%

25%

Figure 3: Power variations decrease the fraction of time each
server is active during a blink interval. No migrations are nec-
essary to adjust to power variations, since all blocks are acces-
sible for a fraction of each blink interval.

data set. If the available power decreases by a factor of 2, with
blinking we have the option of keeping 2N servers active for time
tactive = t

2
every blink interval t. In this case, instead of migrating

data and concentrating it on N active servers, we are able to keep
the same data layout as before without changing our maximum I/O
throughput over each blink interval, assuming negligible transition
overheads. To see why, consider that a layout that concentrates data
storage on N servers is capable of NM MB/sec, assuming a max-
imum I/O throughput per server of M MB/sec, while a distributed
layout on 2N servers with blinking is capable of 2NM MB/sec for
half of every blink interval (or NM MB/sec on average).

Our example highlights that at any fixed power level, blinking is
able to provide the same maximum I/O throughput, assuming neg-
ligible transition overheads, as an activation approach. Blinking,
however, has a distinct advantage over activation if the available
power changes, since it is possible to alter server active intervals
nearly instantly to match the available power. In contrast to an
activation approach, a blinking approach need not waste time and
bandwidth by migrating data to 1) keep it accessible or 2) increase
the maximum I/O throughput. If power suddenly drops again by
another factor of 2, blinking is able to nearly instantly reduce each
server’s active interval by another 2x (tactive = t

4
). Whereas with

activation 50% of the data is completely inaccessible after the drop,
blinking gracefully handles the drop by ensuring that 100% of the
data is accessible for 25% of every blink interval. The average drop
in aggregate I/O throughput per block is also proportional to the
power drop (a factor of 2 to 0.5NM MB/sec). Since no migrations
are necessary to gracefully handle the sudden power drop, there is
no risk of inaccessible data due to unfinished migrations. Figure 3
graphically depicts our simple example with N = 4.

4.2 Data Availability and Latency
Blinking’s primary drawback is a significant increase in average

latency to retrieve data, since any request for data to an inactive
server stalls until the server becomes active. If we assume that
data access latency is negligible for data stored on active servers,
then average latency increases from near 0 with a concentrated data
layout in an activation approach (assuming all data is accessible)
to t−tactive

2
with blinking, assuming request interarrival times are

randomly distributed. Since blink intervals are on the order of 10s
of seconds for platforms with transition latencies of a few hundred
milliseconds, the latency penalty of our naïve blinking policy is

(1)

(2)

Blink Interval

(3)

(4)

D1

D1

Nodes

Blink Interval

D1

D1

Staggered Synchronous

(a) (b)

Figure 4: A staggered server blinking pattern is able to use
replication to maximize the availability of data and decrease
average I/O latency as power varies.

high. While a long average request latency is not important for
long-running batch jobs that take many blink intervals to complete,
it is important for shorter jobs or more interactive workloads.

One way to increase data availability and reduce average I/O la-
tency with blinking is using replication. Staggering server active
intervals equally over each blink interval, by 1) ordering servers
ni for i = 1, 2, 3,N , 2) starting their active intervals in order,
and 3) pausing for time tpause after each activation, enables a sim-
ple replica placement policy that maximizes a block’s availability
over each blink interval, regardless of the available power. In this
case, the size of tpause varies according to available power. The
placement policy spaces out block replicas among servers with ac-
tive intervals that start as far apart as possible within each blink
interval to minimize overlap in the active intervals. We contrast a
staggered blinking schedule with a synchronous blinking schedule
in Figure 4. While both blinking schedules provide the same I/O
throughput, our staggered schedule reduces the average latency to
access D1 by ensuring it is available for the entire blink interval.

As we discuss in our preliminary analysis, significantly reduc-
ing average latency may require aggressive replication. However,
aggressively replicating all blocks significantly reduces storage ca-
pacity. Thus, popularity-based replication and reclamation of in-
dividual blocks is an important optimization for maintaining both
low access latency and ample storage capacity. In this case, as
blocks become more popular more replicas are deployed to increase
availability, and as blocks become less popular more replicas are
reclaimed to increase capacity. Additionally, data centers could
use small amounts of stored power from battery arrays to power
additional servers and accelerate replication for blocks that gain
popularity rapidly under low-power situations. While recent work
demonstrates how to leverage stored power for multi-tier web ap-
plications [8], DR for distributed storage represents another oppor-
tunity for leveraging local energy storage.

Further, unlike data layouts that concentrate replicas on
mutually-exclusive subsets of servers, blinking enables replica
placement of blocks on servers to balance I/O throughput among
servers. Load balancing to ensure each server stores equally pop-
ular data is a worthy goal at both high power—with all servers
active—and low power—with a staggered blinking pattern. In con-
trast, the appropriate size of a server subset in a concentrated data
layout changes with available power. One advantage of blinking
is that data layout decisions, which are costly to change, need not
be based on the available power level: replication combined with
equally-sized, staggered active intervals reduces average latency
under low power, while improving I/O throughput and reliability

Questions?

Figure 5: Wind turbine and solar panel deployment on the roof
of the Computer Science Building at the University of Mas-
sachusetts Amherst.

under high power. Finally, recent work [19] has demonstrated
the difficulty of making online data-intensive services energy-
proportional while maintaining low latency data access using con-
ventional per-server power modes. Our DR-motivated techniques
may also prove useful in this context.

4.3 Energy-efficiency
Blinking also improves energy-efficiency. Recent research

points out the contradiction between deactivating servers to save
energy and load balancing to decrease cooling costs, since fully ac-
tive servers introduce hotspots that increase the energy consump-
tion of cooling [2]. In contrast, staggering active intervals saves the
same energy as deactivating servers, while eliminating hotspots by
load balancing heat generation across all servers. Balancing power
equally across servers is also useful under 3-phase power, since un-
equal consumption across phases wastes power and generates heat
that requires additional energy to cool. Finally, since a staggered
blinking policy minimizes the set of servers that is concurrently ac-
tive, it reduces peak power. Both operational and capital costs are
disproportionately affected by peak, rather than average, power [7].

5. PRELIMINARY ANALYSIS
To gain insight into DR’s potential benefits for data centers, we

simulated two DR scenarios for a small-scale 15-server prototype
we are building, which uses SSD-enabled Mac minis connected
to programmable power supplies that drive variable power traces.
While DR is applicable in many scenarios, our analysis focuses on
1) powering our prototype using wind energy and 2) adhering to a
fixed power budget despite variable energy prices. Both scenarios
generate a variable supply of available power. For wind energy,
we scale a power signal collected from our own small-scale wind
turbine deployment [24], such that its average power is equal to
the power our cluster requires. Figure 5 is a photograph of our
wind turbine and solar panel deployment on the roof of the Com-
puter Science Building. Since wind often generates no power for
long time periods, we assume a base power level of 5% peak clus-
ter power (18.75W). For variable prices, we use the New England
ISO’s 5-minute spot price of energy for the last 3 months of 2010.

Each Mac mini consumes a maximum of 25W for a total cluster
power consumption of 375W. For our simulation, we assume each
SSD stores 10GB of data and has infinite capacity to prevent inac-
cessible data due to a lack of storage space. Since the S3 transition
latency is roughly 1 second, we assume a 60 second blink interval.

 0
 200
 400
 600
 800

 1000
 1200

 0 10 20 30 40 50 60 70 80 90

I/O
 th

ro
ug

hp
ut

 (M
B/

s)

Time (days)

Blinking (price)
Activation (price)

Blinking (wind)
Activation (wind)

Figure 6: The maximum aggregate I/O throughput for blink-
ing is greater than for activation for both our wind energy and
variable price scenarios.

Our analysis assumes a maximum I/O throughput of 65 MB/sec per
server, which represents roughly an equal mix of (fast) reads and
(slow) writes to the SSD. We also assume that the migration speed
between servers is equal to the maximum per-server I/O through-
put. We then compare the maximum I/O throughput possible over a
3-month period for activation and blinking in both scenarios, where
the activation approach must finish migrating data before accessing
it and the blinking approach incurs 1 second of downtime every 60
seconds. The maximum aggregate I/O throughput is one important
measure of the performance of a distributed storage system.

Figure 6 shows that blinking’s I/O throughput is higher than acti-
vation in both scenarios. For wind, the average I/O throughput over
the 3 month period is 174 MB/sec for blinking and 136 MB/sec for
activation, yielding an improvement of nearly 28%. For variable
prices, we use a budget of 2.67¢/kWh, which for our small-scale
cluster, which translates to paying 1¢/hour for energy over the 3-
month period. By comparison, the average price in our trace is
4.55¢/kWh, the peak price is 33.16¢/kWh, and the minimum price
is 0.97¢/kWh. In this case, the average I/O throughput over the 3
month period is 575 MB/sec with blinking and 457 MB/sec with
activation, yielding an improvement of over 25%. Thus, blinking
enables either 25% more work to be done for the same budget, or
the same work to be done for 25% less money.

Figure 7 shows that replication reduces average latency with
blinking significantly, assuming a 20ms latency to access data on
active servers. Since wind requires aggressive replication (10x)
to reduce average latency below 1 second, due to many periods
of no power, per-block popularity-based replication is an impor-
tant optimization. Note that we are not advocating permanent 10x
replication for every data object to decrease the latency penalty
of intermittent power. Rather, we propose aggressive per-object
popularity-based replication as objects become more popular, and
aggressive replica reclamation as objects become less popular. Our
premise is that the average latency for data-intensive workloads that
exhibit high degrees of temporal locality should decrease signifi-
cantly with per-object popularity-based replication, without a sig-
nificant decrease in the aggregate storage capacity.

We view our simulation results, while admittedly rough, as a
conservative estimate of blinking’s benefits. In reality, network
transfers will likely not be as fast as I/O, especially since the clus-
ter will be using network bandwidth to do useful work, which will
reduce activation’s I/O throughput. Additionally, we assume only
enough energy storage for 60 seconds. For wind energy, there are
periods where our cluster is unable to consume 100% of the avail-
able wind energy. Thus, slightly more energy storage could provide
significant benefits. Interestingly, with renewables, it is possible to

 0

 1000

 2000

 3000

 4000

 5000

 0 1 2 3 4 5 6 7 8 9 10

La
te

nc
y

(m
se

c)

Replication Factor

Blinking (wind)
Blinking (price)

Activation

Figure 7: A small amount of replication is capable of signifi-
cantly improving data access latency with blinking.

waste energy by not consuming more of it. We also do not quantify
any of the potential indirect benefits to energy-efficiency discussed
in Section 4.3. Finally, we assume data is never inaccessible with
activation, which is not likely for significant power fluctuations.

6. CONCLUSION AND FUTURE WORK
While we focus on two examples—renewable energy and vari-

able pricing—DR is applicable in other scenarios. For instance, DR
is useful during grid power outages or when data center PDUs fail.
Another compelling example is continuously running background
workloads that always consume the excess power PDUs are capable
of delivering. Since data center capital costs are enormous, maxi-
mizing the power delivery infrastructure’s utilization by operating
as many servers as possible is important. However, data centers
provision power for peak demands, resulting in low utilization [7].

We are currently designing a distributed storage layer for DR.
There are numerous challenges to address in a real system, although
space limitations afford only a brief summary of them here. We are
studying specific policies for deciding when and where to spawn or
destroy replicas based on data popularity and application-specific
performance goals. Additionally, applications that co-locate com-
putation and data require a new mechanism to transfer data between
servers if they are never concurrently active. Another challenge
is ensuring consistency between replicas, while maintaining high
throughput. In the worst case, an entire blink interval is necessary
to ensure consistency. Performing well for write-intensive work-
loads is related, since writes apply to replicas on both active and
inactive servers. We are exploring using a small set of always-
active proxies to address these issues. Proxies absorb writes for an
entire blink interval, and then apply them in order as servers be-
come active in the next interval. Proxies may also act as routers,
to transfer data between servers that are not concurrently active, or
caches to store newly popular data during the replication process.

In conclusion, in this paper, we motivate DR for data centers,
discuss the issues with enabling DR for distributed storage, and
propose a DR-compatible blinking-based approach. While more
work is necessary to validate our ideas, given current trends in
energy consumption and pricing, we believe that DR is worth
exploring in future data centers.

Acknowledgements. This work was supported by the National
Science Foundation under grants CNS-0855128, CNS-0834243,
CNS-0916577, and EEC-0313747.

7. REFERENCES
[1] U.S. Environmental Protection Agency. Report to Congress on

Server and Data Center Energy Efficiency. August 2007.

[2] F. Ahmad and T. Vijaykumar. Joint Optimization of Idle and Cooling
Power in Data Centers while Maintaining Response Time. In
ASPLOS, March 2010.

[3] S. Akoush, R. Sohan, A. Rice, A. Moore, and A. Hopper. Free Lunch:
Exploiting Renewable Energy for Computing. In HotOS, May 2011.

[4] H. Amur, J. Cipar, V. Gupta, M. Kozuch, G. Ganger, and K. Schwan.
Robust and Flexible Power-Proportional Storage. In SoCC, June
2010.

[5] D. Andersen, J. Franklin, M. Kaminsky, A. Phanishayee, L. Tan, and
V. Vasudevan. FAWN: A Fast Array of Wimpy Nodes. In SOSP,
October 2009.

[6] L. Barroso and U. Hölzle. The Case for Energy-Proportional
Computing. Computer, 40(12):33–37, December 2007.

[7] X. Fan, W. Weber, and L. Barroso. Power Provisioning for a
Warehouse-Sized Computer. In ISCA, June 2007.

[8] S. Govindan, A. Sivasubramaniam, and B. Urgaonkar. Benefits and
Limitations of Tapping into Stored Energy for Datacenters. In ISCA,
June 2011.

[9] P. Gupta. Google to use Wind Energy to Power Data Centers. In New
York Times, July 20th 2010.

[10] J. Hamilton. Overall Data Center Costs. In Perspectives.
http://perspectives.mvdirona.com/, September 18, 2010.

[11] J. Hamilton. 2011 European Data Center Summit.
http://perspectives.mvdirona.com/, May 25, 2011.

[12] R. Hirsch, R. Bezdek, and R. Wendling. Peaking of World Oil
Production: Impacts, Mitigation, and Risk Management. In U.S.
Department of Energy, February 2005.

[13] R. Kaushik and M. Bhandarkar. GreenHDFS: Towards an
Energy-Conserving Storage-Efficient, Hybrid Hadoop Compute
Cluster. In USENIX Annual Technical Conference, June 2010.

[14] United Kingdom. CRC Energy Efficiency Scheme.
http://www.decc.gov.uk/, June 2011.

[15] A. Krioukov, C. Goebel, S. Alspaugh, Y. Chen, D. Culler, and
R. Katz. Integrating Renewable Energy Using Data Analytics
Systems: Challenges and Opportunities. In Bulletin of the IEEE
Computer Society Technical Committee, March 2011.

[16] A. Krioukov, P. Mohan, S. Alspaugh, L. Keys, D. Culler, and
R. Katz. NapSAC: Design and Implementation of a
Power-Proportional Web Cluster. In GreenNet, August 2010.

[17] Lawrence Livermore National Laboratory. U.S. Energy Flowchart
2008. https://flowcharts.llnl.gov/, June 2011.

[18] J. Leverich and C. Kozyrakis. On the Energy (In)efficiency of
Hadoop Clusters. In HotPower, October 2009.

[19] D. Meisner, C. Sadler, L. Barroso, W. Weber, and T. Wenisch. Power
Management of Online Data-Intensive Services. In ISCA, June 2011.

[20] R. Miller. Microsoft to use Solar Panels in New Data Center. In Data
Center Knowledge, September 24th 2008.

[21] R. Miller. Morgan Stanley Plans Tide-Powered Data Center. In Data
Center Knowledge, October 17th 2008.

[22] A. Qureshi, R. Weber, H. Balakrishnan, J. Guttag, and B. Maggs.
Cutting the Electric Bill for Internet-Scale Systems. In SIGCOMM,
August 2009.

[23] S. Rivoire, M. Shah, , and P. Ranganathan. JouleSort: A Balanced
Energy-Efficient Benchmark. In SIGMOD, June 2007.

[24] N. Sharma, S. Barker, D. Irwin, and P. Shenoy. Blink: Managing
Server Clusters on Intermittent Power. In ASPLOS, March 2011.

[25] K. Shvachko, H. Kuang, S. Radia, and R. Chansler. The Hadoop
Distributed File System. In MSST, May 2010.

[26] N. Tolia, Z. Wang, M. Marwah, C. Bash, P. Ranganathan, and X. Zhu.
Delivering Energy Proportionality with Non-Energy-Proportional
Systems: Optimizing the Ensemble. In HotPower, December 2008.

[27] V. Vasudevan, D. Andersen, M. Kaminsky, L. Tan, J. Franklin, and
I. Moraru. Energy-efficient Cluster Computing with FAWN:
Workloads and Implications. In e-Energy, April 2010.

[28] T. Wood, K. Ramakrishnan, P. Shenoy, and J. Van der Merwe.
CloudNet: Dynamic Pooling of Cloud Resources by Live WAN
Migration of Virtual Machines. In VEE, March 2011.

[29] Q. Zhu, Z. Chen, L. Tan, Y. Zhou, K. Keeton, and J. Wilkes.
Hibernator: Helping Disk Arrays Sleep Through the Winter. In
SOSP, October 2005.

